Contents lists available at SciVerse ScienceDirect

Talanta

journal homepage: www.elsevier.com/locate/talanta

New approach to complex organic compounds mixtures analysis based on gas chromatography-atmospheric pressure photoionization-mass-spectrometry

I.A. Revelsky*, Yu.S. Yashin

Chemistry Department, Lomonosov Moscow State University, Leninskie Gory 1, bldg 3, 119992 GSP-2, Moscow, Russia

ARTICLE INFO

Available online 29 August 2012

ABSTRACT

Keywords: GC/MS (APPhI/APPhCI) Complex mixtures analysis The mass-spectra of a number of different hydrocarbons were obtained using atmospheric pressure photoionization (APPhI) and photochemical ionization (APPhCI) mass-spectrometry. The respective mass-spectra consisted mainly of molecular (M⁺) or quasimolecular (MH⁺) ion peaks or both. The composition of aromatic hydrocarbons in straight-run gasoline was investigated using standard PIONA method, based on capillary GC and retention time indexes, and GC/MS (APPhI). 56 aromatic hydrocarbons were identified using GC/MS (APPhI) and 43-using standard PIONA method. The opportunities of MS (APPHCI) for determination of impurities in pure hydrocarbons and for direct analysis of complex mixtures without separation were demonstrated when MS (APPhCI) analysis for GC standards of benzene and toluene was carried out (main component vapor was reagent gas). The targeted PAHs and phtalates were registered selectively in 44 component model mixture of semivolatiles with partial or without separation of the components, using GC/MS (APPhI).

© 2012 Published by Elsevier B.V.

1. Introduction

The most widely used approach to complex hydrocarbon mixtures analysis is based on capillary GC with flame ionization detector (FID) or with mass-spectrometer (GC/MS). In latter case electron ionization (EI) mode is used in most cases. For many hydrocarbons (especially n-alcanes) the intensity of molecular ion peak-most important peak in EI mass-spectra-is very low. In case of aromatic hydrocarbons this peak intensity is high but it is very often not most intensive peak of mass-spectra. In general case mass-spectra of hydrocarbons consist of a lot of ion peaks, which are not characteristic for individual compound. Molecular ion peak (or quasimolecular ion) intensity of many hydrocarbons can be increased due to use of chemical ionization mode, but detection limit in this case is about ten times higher $(10^{-10}-10^{-9} \text{ g})$ than in case of EI mode. Due to complex EI mass-spectra composition of individual hydrocarbons their selective registration in complex mixtures is difficult or even impossible especially when mixture is only partially resolved into compounds. Besides that registration of the compounds coeluted with the main component, concentration of which is much higher than of coeluted impurities is not possible in case of EI and CI massspectrometry due to need to switch-off cathode current.

* Corresponding author. E-mail address: revelsky@environment.chem.msu.ru (I.A. Revelsky). In case of pure organic compounds analysis for impurities the most difficult problem is recognition of the number of impurities, which are not known. It cannot be solved properly even in case of capillary GC/MS (EI, CI), as complete separation of impurities from the main component is not possible in this case also. It is well known, that complex hydrocarbon mixtures cannot be separated completely (part of the components are coeluted).

We have developed method of atmospheric pressure photoionisation (APPhI) and atmospheric pressure photochemical ionization (APPhCI) mass-spectrometry [1.2]. Unlike EI, this method enables the registering of mass-spectra for individual compounds, which consist of only molecular [M]⁺ and/or quasimolecular [MH]⁺ ion peaks. Such capability was demonstrated for compounds (n-alcanes, alcohols, esters, ethers and amines) EI massspectra which contained molecular ion peaks of very low intensity or they were absent at all. APPhI and APPhCI mass-spectra were investigated for a lot of compounds (more than 200) (normal and branched alcohols, aromatic hydrocarbons, polyaromatic hydrocarbons (PAHs), phthalates, alkyklphosphates and phosphonates, phenols, amines, nitroaromatics, polychlorbiphenyles (PCBs), tert-butyldimethylsilyl (TMDMS) derivatives of aminoacids etc.) using GC/MS (APPhI/APPhCI) [3–10].

In all cases respective mass-spectra consisted of only molecular and/or quasimolecular peaks, depending on the nature of compounds and reagent vapor (used in APPhCI MS).

Detection limits in GC/MS (APPhI) were 10^{-12} - 10^{-10} g in SIM mode, depending on ionization potential of the compound and

^{0039-9140/\$ -} see front matter © 2012 Published by Elsevier B.V. http://dx.doi.org/10.1016/j.talanta.2012.07.023

UV-lamp photons energy; in GC/MS (APPhCI) – 10^{-14} – 10^{-13} g in the same SIM mode depending on the compound and reagent vapor.

Fast selective and high sensitive GC/MS (APPhCI) determination of phtalates in complex mixtures using short capillary columns (1.5 m) was demonstrated in [11]. Detection limits in SIM mode were 10^{-13} - 10^{-12} g. In case of GC/MS (APPhCI) respective detection limits for phosphates and phosphonates [12] were about $(3-5) \times 10^{-13}$ g.

In the case of mixture analysis without separation APPhI MS [11,12] as well APPhCI MS [4–9] were applied.

The number peaks, registered in respective APPhCI mass-spectra of mixtures without separation, coincided with the number of components in the mixture (in case of model mixtures) [11,12].

Every peak corresponded to respective molecular or quasimolecular ion. Detection limits in the case of solution mixtures analysis without separation by APPhCI MS were about the same as in case of GC/MS (APPhCI). It is obvious that direct mixture mass-spectrometric analysis at atmospheric or subatmospheric pressure using photoionisation described in [18–21] in reality is APPhCI MS or sub-APPhCI MS. In spite of successful coupling of APPhCI MS with micro-HPLC [22], we considered that GC/MS (APPhI/APPhCI) was preferable for analysis of GC amenable compounds due to as higher efficiency of capillary columns and higher sensitivity of GC/MS (APPhCI).

Reliable and selective determination of aromatic hydrocarbons, PAHs and phtalates in complex mixtures, as well of impurities in pure hydrocarbons (GC standards) is very important. Therefore it was interesting to investigate possibility of high selective recognition of aromatic hydrocarbons in straight-run gasoline, targeted compounds in complex mixtures and impurities in some hydrocarbon GC standards using GC/MS (APPhCI).

2. Experimental

Our investigation was carried out using Finnigan model «4021» GC/MS equipped with APPh/APPhCl ion source developed by us.

These methods of ionization are described in Refs. [1–3,11,12].

In case of straight-run gasoline analysis 100 m × 0.25 mm × 0.25 µm capillary column with nonpolar (SE-30) cross-bonded stationary phase was used. The same column was used in standard PIONA method. It was connected directly to the ion source, 1 µl of gasoline was introduced into injector in split mode. Helium flow rate was about 1.5 ml/min. Split ratio was 200:1. The separation of hydrocarbon mixtures was carried out using temperature programming: isotherm 35 °C (14 min), temperature increasing rate 1.1 °C/min till 60 °C; isotherm 60 °C (19 min), heating till 250 °C with rate 2 °C/min, isotherm 250 °C (10 min).

Injector temperature was 250 °C. The internal volume of the ionization chamber was about 150 μ l. Make-up gas flow was also used (about 30 ml/min). The photoionisation was carried out using krypton discharge lamp; energy of UV photons was 10.2 eV. Ion source temperature was 240 °C.

The analysis of 44 component mixture, containing PAH's and phthalates was carried out using capillary column (7 m \times 0.32 mm \times 0.25 µm) with cross-bonded SE-54 stationary phase.

3. Compounds

As model compounds mixtures we have used the set of mixtures of different hydrocarbons (alkanes – 11, iso-alkanes – 32, olefins – 25, naphtenes – 27 and aromatics – 36) and the mixture of hydrocarbons, containing 144 compounds, belonging to different

classes (ALPHAGAS, USA). Besides that we have separated components of straight-run gasoline.

GC standards (Polyscience Corp., USA) of toluene and benzene and 44 component mixture of semivolatiles, containing PAHs and phthalates, were used in our research also.

4. Results and discussion

Total number of peaks on chromatograms of registered in total ion current (TIC) mode for sample of straight-run gasoline was about 200. Selective registration of aromatic hydrocarbons and their identification was carried out using mass-chromatograms, registered for m/z=78, 92, 106, 120, 134, 148, 162, 128, 142 and respective retention indexes.

APPhI mass-spectra of aromatic hydrocarbons consisted practically of one peak, corresponding to molecular ion peak.

The comparison of the GC/APPhI MS data with respective PIONA method data has allowed to identify additionally 13 aromatic hydrocarbons. Total number of reliably identified aromatic hydrocarbons with the help of GC/APPhI MS has allowed to determine more accurately their content in the sample of the straight-run gasoline in comparison with PIONA method. The content of these hydrocarbons, determined by GC/APPhI MS and PIONA method, was 8.54% and 5.96% respectively. The determination of aromatic hydrocarbons content was carried out using coefficients of relative sensitivity of Photoionisation detector (PID), determined by us before and using iso-propylbenzene as external standard. It is necessary to keep in mind that accuracy of aromatic hydrocarbons content determination is very important in gasoline quality control. The respective data are presented in the Table 1.

As it is seen from the Table 1, GC/APPhI MS has allowed to increase the reliability of components number determination and their selective identification in complex multicomponent mixture. Using short capillary column (15 m × 0.25 mm × 0.4 μ film thickness)with unpolar (SE-30) and polar (Carbowax 20M) bonded stationary phases the possibility of fast selective determination of the aromatic hydrocarbons in straight-run gasolines with the help of GC/APPhI MS was shown also. The time of analysis in this case was not more than 15 min. GC/APPhI MS has to be perspective in catalytic gasoline analysis for aromatic hydrocarbons. This type of gasoline cannot be analyzed accurately, when standard PIONA method is used, due to high concentrations of aromatics in the mixture, overloading of the capillary column and incorrect identification on the base of retention indexes.

For the demonstration of the opportunities of APPhI massspectrometry for the determination of the number and nature of impurities in pure organic compounds APPhI MS analysis of benzene and toluene (without separation) was carried out (specified purity degree of them was higher than 99.5%). The number and nature of impurities was not known to us. GC/MS (EI mode) of these compounds has shown that on total ion chromatogram of the former one was registered one impurity and on the respective chromatogram of the latter one – two impurities.

As to APPhI mass-spectrometry (see Tables 2 and 3) 29 impurities were registered in benzene and 40 ones – in toluene.

As it is seen from the data, presented in the Tables 2 and 3, and comparison of them with the respective data, obtained using GC/MS (EI) for the same samples of GC standards such ones as toluene and benzene, the direct APPhI MS analysis allows to determine much more impurities being present in these fine chemicals than usual approach based on GC/MS (EI) analysis and to identify them on the base of their molecular weights. To be more correct – it is APPhCI MS and reagent vapor of the main component used as reagent gas.

Table 1

Determination of aromatic hydrocarbons in straight-run gasoline by HRGC (PIONA method) and by HRGC/APPhI MS.

1 Benzene 652.70 Not ident. 78 0.008 2 Toluene 756.20 Not ident. 92 0.530 3 Ethylbenzene 853.56 0.639 106 0.805 4 m-Xylene 862.42 1.284 106 2.32(4+5) 5 p-Xylene 863.41 0.447 106 - 6 o-Xylene 82.48 0.856 106 0.740 7 I-Propylbenzene 945.86 0.257 120 0.446 10 1-Methyl-4-Ethylbenzene 956.10 Not ident. 120 0.432 11 1.3,5-Trimethylbenzene 911.16 0.255 120 0.475 12 1-Methyl-4-Ethylbenzene 983.44 0.079 134 0.001 15 i-Butylbenzene 988.09 0.045 134 0.003 16 sec-Butylbenzene 100.774 0.153 120 0.362 16 sec-Butylbenzene 100.767 <td< th=""><th>PPhI/MS)</th></td<>	PPhI/MS)
2 Toluene 756.20 Not ident. 92 0.530 3 Ethylbenzene 853.56 0.639 106 0.805 4 m-Xylene 862.42 1.284 106 2.32(4+5) 5 p-Xylene 863.41 0.447 106	
3 Ethylbenzene 853,56 0.639 106 0.805 4 m-Xylene 862,42 1.284 106 2.32(4+5) 5 p-Xylene 883,41 0.447 106 6 o-Xylene 882,48 0.856 106 0.740 7 i-Propylbenzene 912,83 0.012 120 0.548 9 1-Methyl-J-Ethylbenzene 955,80 0.152 120 0.446 10 1-Methyl-J-Ethylbenzene 956,10 Not ident. 120 0.475 12 1-Methyl-J-Ethylbenzene 971,16 0.255 120 0.475 13 1,2,4-Timethylbenzene 984,54 0.079 134 0.001 15 i-Butylbenzene 995,82 0.006 134 0.006 17 1,2,3-Timethylbenzene 1007,74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1007,74 0.056 134 0.003 19 1-Methyl-4-i-propylbenzene <td< td=""><td></td></td<>	
4 m-Xylene 862.42 1.284 106 2.32(4+5) 5 p-Xylene 863.41 0.447 106 6 o-Xylene 882.48 0.856 106 0.740 7 i-Propylbenzene 912.83 0.012 120 0.548 9 1-Methyl-3-Ethylbenzene 955.80 0.152 120 0.446 10 1-Methyl-4-Ethylbenzene 961.62 0.188 120 0.475 12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.232 13 1.2.4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 995.82 0.006 134 0.006 15 i-Butylbenzene 1007.74 0.153 120 0.362 15 i-Methyl-3-i-propylbenzene 1003.86 0.054 134 0.003 16 sec-Butylbenzene 1007.74 0.153 120 0.362 17 1.2.3-Trimethylbenzene 1004.70<	
5 p-Xylene 863.41 0.447 106 6 o-Xylene 882.48 0.856 106 0.740 7 i-Propylbenzene 912.83 0.012 120 0.164 8 n-Propylbenzene 945.86 0.257 120 0.548 9 1-Methyl-3-Ethylbenzene 955.80 0.152 120 0.446 10 1-Methyl-4-Ethylbenzene 955.10 Not ident. 120 0.232 11 1.3,5-Trimethylbenzene 983.41 0.352 120 0.475 12 1-Methyl-2-Ethylbenzene 983.41 0.352 120 0.475 13 1.2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 995.82 0.006 134 0.004 15 i-Butylbenzene 1007.74 0.153 120 0.362 17 1.2,3-Trimethylbenzene 1009.86 0.054 134 0.003 19 1-Methyl-2-i-propylbenzene	
6 o-Xylene 882.48 0.856 106 0.740 7 i-Propylbenzene 912.83 0.012 120 0.164 8 n-Propylbenzene 945.86 0.257 120 0.548 9 1-Methyl-3-Ethylbenzene 955.80 0.152 120 0.446 10 1-Methyl-4-Ethylbenzene 956.10 Not ident. 120 0.232 11 1.3.5-Trimethylbenzene 961.62 0.188 120 0.475 12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.234 13 1.2.4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 984.54 0.079 134 0.004 16 sec-Butylbenzene 1007.74 0.153 120 0.362 17 1.2.3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-4-i-propylbenzene 1013.47 0.056 134 0.003 20	
7 i-Propylbenzene 912.83 0.012 120 0.164 8 n-Propylbenzene 945.86 0.257 120 0.548 9 1-Methyl-3-Ethylbenzene 955.80 0.152 120 0.232 10 1-Methyl-4-Ethylbenzene 956.10 Not ident. 120 0.232 11 1,3,5-Trimethylbenzene 971.16 0.255 120 0.234 13 1,2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 984.54 0.079 134 0.001 15 i-Butylbenzene 998.00 0.045 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1007.74 0.056 134 0.003 19 1-Methyl-4-i-propylbenzene 1027.67 0.290 134 0.001 21 1,3-Diethylbenzene 1042.70 0.081 134 0.023 22 1-Methyl-4-i-propylbenzene 1044.40 0.125 134 0.123	
8 n-Propylbenzene 945.86 0.257 120 0.548 9 1-Methyl-3-Ethylbenzene 955.80 0.152 120 0.446 10 1-Methyl-4-Ethylbenzene 956.10 Not ident. 120 0.232 11 1.3,5-Trimethylbenzene 961.62 0.188 120 0.475 12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.234 13 1,2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 988.54 0.079 134 0.001 15 i-Butylbenzene 995.82 0.006 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-4-i-propylbenzene 1013.47 0.056 134 0.001 20 1-Methyl-2-i-propylbenzene 1042.70 0.081 134 0.023 21 1,3-Diethylbenzene 1044.44 0.125 134 0.123	
9 1-Methyl-3-Ethylbenzene 955.80 0.152 120 0.446 10 1-Methyl-4-Ethylbenzene 956.10 Not ident. 120 0.232 11 1,3,5-Trimethylbenzene 961.62 0.188 120 0.475 12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.234 13 1,2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 984.54 0.079 134 0.004 15 i-Butylbenzene 995.82 0.006 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1003.47 0.056 134 0.001 20 1-Methyl-4-i-propylbenzene 1027.67 0.290 134 0.001 21 1,3-Diethylbenzene 1042.70 0.081 134 0.024 23 1.4-Diethylbenzene 1044.55 0.109 134 0.177	
10 1-Methyl-4-Ethylbenzene 956.10 Not ident. 120 0.232 11 1,3,5-Trimethylbenzene 961.62 0.188 120 0.475 12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.234 13 1,2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 984.54 0.079 134 0.004 15 i-Butylbenzene 998.00 0.045 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-4-i-propylbenzene 1009.86 0.054 134 0.001 20 1-Methyl-4-i-propylbenzene 1027.67 0.290 134 0.001 21 1,3-Diethylbenzene 1042.70 0.081 134 0.012 23 1,4-Diethylbenzene 1044.44 0.125 134 0.024 23 1,4-Diethylbenzene 1046.55 0.109 134 0.177	
11 1.3,5-Trimethylbenzene 961.62 0.18k 120 0.475 12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.234 13 1,2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 984.54 0.079 134 0.001 15 i-Butylbenzene 995.82 0.006 134 0.004 16 sec-Butylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1007.74 0.056 134 0.003 19 1-Methyl-3-i-propylbenzene 1027.67 0.290 134 0.001 21 1,3-Diethylbenzene 1042.70 0.081 134 0.003 22 1-Methyl-3-n-propylbenzene 1044.44 0.125 134 0.012 23 1.4-Diethylbenzene 1044.70 0.033 134 0.047 24 1-Methyl-3-n-propylbenzene 1044.44 0.125 134 0.123	
12 1-Methyl-2-Ethylbenzene 971.16 0.255 120 0.475 13 1,2,4-Trimethylbenzene 983.41 0.352 120 0.475 14 t-Butylbenzene 984.54 0.079 134 0.001 15 i-Butylbenzene 995.82 0.006 134 0.006 16 sec-Butylbenzene 998.00 0.045 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1003.86 0.054 134 0.003 19 1-Methyl-3-i-propylbenzene 1027.67 0.290 134 0.001 20 1-Methyl-3-i-propylbenzene 1042.70 0.081 134 0.003 21 1,3-Diethylbenzene 1044.44 0.125 134 0.123 23 1,4-Diethylbenzene 1047.70 0.033 134 0.123 23 1,4-Diethylbenzene 1045.5 0.109 134 0.024 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024	
13 1,2,4-Trimethylbenzene 983,41 0.352 120 0.475 14 t-Butylbenzene 984,54 0.079 134 0.001 15 i-Butylbenzene 995,82 0.006 134 0.004 16 sec-Butylbenzene 998,00 0.045 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1009,86 0.054 134 0.003 19 1-Methyl-4-i-propylbenzene 1027,67 0.290 134 0.001 20 1-Methyl-3-n-propylbenzene 1042,70 0.081 134 0.003 21 1,3-Diethylbenzene 1046,55 0.109 134 0.123 23 1,4-Diethylbenzene 1046,70 0.033 134 0.024 24 1-Methyl-4-n-propylbenzene 1047,70 0.033 134 0.024 25 n-Butylbenzene 1049,70 Not ident. 134 0.067 26 1,3-Dimethyl-2-Ethylbenzene 1061,30 0.026 134 0.01	
14 t.B.tr Huthylenzene 930-74 0.002 126 0.079 14 t.Butylbenzene 995.82 0.006 134 0.001 15 i-Butylbenzene 998.00 0.045 134 0.006 16 sec-Butylbenzene 998.00 0.045 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1013.47 0.056 134 0.005 20 1-Methyl-3-i-propylbenzene 1027.67 0.290 134 0.011 21 1,3-Diethylbenzene 1042.70 0.081 134 0.003 22 1-Methyl-3-n-propylbenzene 1046.55 0.109 134 0.127 23 1,4-Diethylbenzene 1046.55 0.109 134 0.024 25 n-Butylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1049.70 Not ident. 134 0.067 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067	
141516416416416416416415i-Butylbenzene998.000.0451340.006171,2,3-Trimethylbenzene1007.740.1531200.362181-Methyl-3-i-propylbenzene1009.860.0541340.003191-Methyl-4-i-propylbenzene1013.470.0561340.001201-Methyl-2-i-propylbenzene1027.670.2901340.003211,3-Diethylbenzene1042.700.0811340.003221-Methyl-3-n-propylbenzene1044.440.1251340.123231,4-Diethylbenzene1046.550.1091340.024241-Methyl-4-n-propylbenzene1047.700.0331340.02425n-Butylbenzene1049.70Not ident.1340.089261,3-Dimethyl-5-Ethylbenzene1049.70Not ident.1340.067271,2-Diethylbenzene1061.300.0201340.016281-Methyl-2-n-propylbenzene1061.300.0201340.016291,4-Dimethyl-2-Ethylbenzene1068.790.1311340.01830sec-Pentylbenzene1070.020.0161480.014311,2-Dimethyl-2-Ethylbenzene1081.180.0121340.088331-Methyl-4-Ehylbenzene1080.75Not ident.1340.017	
16 sec-Butylbenzene 998.00 0.045 134 0.006 17 1,2,3-Trimethylbenzene 1007.74 0.153 120 0.362 18 1-Methyl-3-i-propylbenzene 1009.86 0.054 134 0.003 19 1-Methyl-4-i-propylbenzene 1013.47 0.056 134 0.001 20 1-Methyl-3-i-propylbenzene 1027.67 0.290 134 0.003 21 1,3-Diethylbenzene 1042.70 0.081 134 0.003 22 1-Methyl-3-n-propylbenzene 1044.44 0.125 134 0.123 23 1,4-Diethylbenzene 1046.55 0.109 134 0.024 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1049.70 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.075 28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 10668.79 0.131<	
103.C. July Interface3.55.000.04-51.140.000171,2,3-Trimethylbenzene1007.740.1531200.362181-Methyl-3-i-propylbenzene1009.860.0541340.003191-Methyl-4-i-propylbenzene1013.470.0561340.001201-Methyl-2-i-propylbenzene1042.700.0811340.003211,3-Diethylbenzene1042.700.0811340.123221-Methyl-3-n-propylbenzene1044.440.1251340.123231,4-Diethylbenzene1046.550.1091340.024241-Methyl-4-n-propylbenzene1047.700.0331340.02425n-Butylbenzene1049.70Not ident.1340.089261,3-Dimethyl-5-Ethylbenzene1051.600.0261340.075281-Methyl-2-en-propylbenzene1061.300.0201340.016291,4-Dimethyl-2-Ethylbenzene1068.790.1311340.01830sec-Pentylbenzene1075.75Not ident.1340.017311,2-Dimethyl-4-Ethylbenzene1075.75Not ident.1340.017321,3-Dimethyl-2-Ethylbenzene1075.75Not ident.1340.088331-Methyl-4-t-Butylbenzene1090.780.0011480.007	
17 1.2.5-Initiating interface 1007.4 0.133 120 0.302 18 1-Methyl-3-i-propylbenzene 1009.86 0.054 134 0.003 19 1-Methyl-4-i-propylbenzene 1013.47 0.056 134 0.001 20 1-Methyl-2-i-propylbenzene 1027.67 0.290 134 0.003 21 1,3-Diethylbenzene 1042.70 0.081 134 0.003 22 1-Methyl-3-n-propylbenzene 1044.44 0.125 134 0.123 23 1,4-Diethylbenzene 1046.55 0.109 134 0.024 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1049.70 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.016 28 1-Methyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016	
181-Wethyl-3-1-propylbenzene1005,800.0341340.005191-Methyl-4-i-propylbenzene1013,470.0561340.001201-Methyl-2-i-propylbenzene1027,670.2901340.003211,3-Diethylbenzene1042,700.0811340.003221-Methyl-3-n-propylbenzene1044,440.1251340.123231,4-Diethylbenzene1046,550.1091340.024241-Methyl-4-n-propylbenzene1047,700.0331340.02425n-Butylbenzene1049,70Not ident.1340.067261,3-Dimethyl-5-Ethylbenzene1049,70Not ident.1340.067271,2-Diethylbenzene1051,600.0261340.075281-Methyl-2-n-propylbenzene1066,790.1311340.01830sec-Pentylbenzene1070,020.0161480.014311,2-Dimethyl-2-Ethylbenzene1075,75Not ident.1340.088331-Methyl-4-Ethylbenzene1090,780.0011480.007	
191-Methyl-4-1-propylbenzene1013.470.0361340.003201-Methyl-2-i-propylbenzene1027.670.2901340.001211,3-Diethylbenzene1042.700.0811340.03221-Methyl-3-n-propylbenzene1044.440.1251340.123231,4-Diethylbenzene1046.550.1091340.077241-Methyl-4-n-propylbenzene1047.700.0331340.02425n-Butylbenzene1049.70Not ident.1340.067261,3-Dimethyl-5-Ethylbenzene1049.70Not ident.1340.067271,2-Diethylbenzene1051.600.0261340.075281-Methyl-2-n-propylbenzene1061.300.0201340.016291,4-Dimethyl-2-Ethylbenzene1068.790.1311340.01830sec-Pentylbenzene1070.020.0161480.017311,2-Dimethyl-4-Ethylbenzene1075.75Not ident.1340.088331-Methyl-4-Ethylbenzene1090.780.0011480.007	
20 1-Methyl-2-1-propylbenzene 1027.07 0.290 134 0.001 21 1,3-Diethylbenzene 1042.70 0.081 134 0.123 22 1-Methyl-3-n-propylbenzene 1044.44 0.125 134 0.123 23 1,4-Diethylbenzene 1046.55 0.109 134 0.024 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1049.70 Not ident. 134 0.067 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.075 28 1-Methyl-2-n-propylbenzene 1068.79 0.131 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1070.02 0.016 148 0.014 30 sec-Pentylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1075.75 Not ident. 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 <td< td=""><td></td></td<>	
21 1,3-Diethylbenzene 1042.70 0.081 134 0.003 22 1-Methyl-3-n-propylbenzene 1044.44 0.125 134 0.123 23 1,4-Diethylbenzene 1046.55 0.109 134 0.024 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1048.40 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.016 28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1067.75 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.0	
22 1-Metryl-3-h-propylbenzene 1044.44 0.125 134 0.123 23 1,4-Diethylbenzene 1046.55 0.109 134 0.024 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1048.40 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.016 28 1-Methyl-2-n-propylbenzene 1068.79 0.131 134 0.018 29 1,4-Dimethyl-2-Ethylbenzene 1070.72 0.016 148 0.014 30 sec-Pentylbenzene 1075.75 Not ident. 134 0.017 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
23 1,4-Diethylbenzene 1046.55 0.109 134 0.177 24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1048.40 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.016 28 1-Methyl-2-n-propylbenzene 1068.79 0.131 134 0.018 29 1,4-Dimethyl-2-Ethylbenzene 1070.02 0.016 148 0.014 30 sec-Pentylbenzene 1075.75 Not ident. 134 0.017 31 1,2-Dimethyl-2-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
24 1-Methyl-4-n-propylbenzene 1047.70 0.033 134 0.024 25 n-Butylbenzene 1048.40 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.075 28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.088 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
25 n-Butylbenzene 1048.40 Not ident. 134 0.089 26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.075 28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.088 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
26 1,3-Dimethyl-5-Ethylbenzene 1049.70 Not ident. 134 0.067 27 1,2-Diethylbenzene 1051.60 0.026 134 0.075 28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.017 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.088 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
27 1,2-Diethylbenzene 1051.60 0.026 134 0.075 28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
28 1-Methyl-2-n-propylbenzene 1061.30 0.020 134 0.016 29 1,4-Dimethyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
29 1,4-Dimethyl-2-Ethylbenzene 1068.79 0.131 134 0.018 30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
30 sec-Pentylbenzene 1070.02 0.016 148 0.014 31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
31 1,2-Dimethyl-4-Ethylbenzene 1075.75 Not ident. 134 0.017 32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
32 1,3-Dimethyl-2-Ethylbenzene 1081.18 0.012 134 0.088 33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
33 1-Methyl-4-t-Butylbenzene 1090.78 0.001 148 0.007	
34 1,2-Dimethyl-3-Ethylbenzene 1093.73 0.048 134 0.059	
35 1-Ethyl-2-i-propylbenzene 1096.87 0.008 148 0.012	
36 1-Ethyl-4-i-propylbenzene 1103.86 0.003 148 0.006	
37 1,2,4,5-Tetramethylbenzene 1105.95 0.020 134 0.045	
38 1,2,3,5-Tetramethylbenzene 1108.37 0.023 134 0.004	
39 2-Methylbutylbenzene 1109.74 0.001 148 0.004	
40 1-t-Butyl-2-methylbenzene 1125.11 0.001 148 0.009	
41 1-Ethyl-2-n-propylbenzene 1134.93 0.002 148 0.005	
42 1-Methyl-3-n-butylbenzene 1141.42 0.007 148 0.005	
43 1,3-Di-i-propylbenzene 1143.96 0.043 162 0.001	
44 n-Pentylbenzene 1148.91 Not ident. 148 0.006	
45 1,2-Di-i-propylbenzene 1158.34 0.011 162 0.001	
46 1-Methyl-2-n-butylbenzene 1159.69 0.006 148 0.001	
47 1.4-Di-j-propylbenzene 1159.80 Not ident. 162 0.001	
48 Naphtalene 1167.46 0.100 128 0.227	
49 1-t-Butyl-3.5-dimethylbenzene 1169.58 0.005 162 0.001	
50 1,3-Di-n-propylbenzene 1188.25 0.001 162 0.001	
51 1.3.5-Triethylbenzene 1209.32 0.004 162 0.001	
52 1-t-Butyl-4-ethylbenzene 1226.42 Not ident 162 0.001	
53 124-Triethylpenzene 123150 Not ident 162 0.001	
54 1-Methyl-4-n-pentylbenzene 1243.00 Not ident 162 0.001	
55 n-Hexylhenzene 1253.50 Not ident 162 0.001	
56 2-Methylaphtalene 126950 Not ident 142 0.073	
50 2 inclusing indicated in 1205.50 including 142 0.073	
54iii-5,552 54iii-6,545	

Detection limit for iso-propyl benzene (model compound) using GC/MS (APPhI) in scan mode was about 4×10^{-11} g and in SIM mode – 4×10^{-12} g. Our experiments with GC/MS (APPhCI) (benzene vapor was used as reagent gas) have shown that respective calculated detection limit was about 100 times less than in GC/MS (APPhI).

As it is seen from the Table 4, components with very close retention times were reliably recognized due to respective molecular or quasimolecular ions.

5. Conclusion

We have investigated possibility of selective registration of the sets of targeted PAHs and phthalates in model mixture of 44 semivolatile organic compounds using GC/MS (APPhI). Many compounds were only partially resolved.

All targeted compounds being present in the mixture were registered. Respective data are presented in the Table 4.

It was shown that APPhI mass-spectra of individual compounds consist practically of one ion peak (M^+ or MH^+).

Using GC/MS (APPhI) possibility of selective recognition of aromatic hydrocarbons in straight-run gasoline was shown. The number of registered aromatics was 56. In case of standard PIONA

Tab	ole	2

Homological ion series in mass-spectrum of investigated sample of high purity degree toluene.

Item	m/z of ions	Empiric formula	Number of ion peaks	Class of organic compounds
1	96; 106; 120; 134; 148; 162; 176; 190; 218	$\begin{array}{c} C_{n}H_{2n-6}\\ C_{n}H_{2n+2} \end{array}$	9	Alkylbenzenes (C_7 – C_{15})
2	86; 128; 142; 170; 184; 198; 212		7	n- and iso-alkanes (C_6 ; C_9 – C_{10} ; C_{12} – C_{15})
3	96; 110; 124; 166; 180; 194; 236	$C_n H_{2n-2}$ $C_n H_{2n-4}$	7	aliphatic dienes (C_7 – C_9 ; C_{12} – C_{14} ; C_{17})
4	80; 108; 136; 150		4	cyclodienes (C_6 ; C_8 ; C_{10} – C_{11})
5	144; 172; 186; 200; 214; 242	$C_n H_{2n-10}$ $C_n H_{2n-4} S$	6	Dinaphtobenzenes (C_{11} ; C_{13} – C_{16} ; C_{18})
6	98; 112; 140; 154; 168; 182; 196		7	Alkyltiophenes (C_5 – C_6 ; C_8 – C_{13}) and olefines

Table 3

Homological ion series in mass-spectrum of investigated sample of high purity degree benzene.

Item	m/z of ions	Empiric formula	Number of ion peaks	Class of organic compounds
1	96; 106; 120; 134; 148; 162; 176	$C_{n}H_{2n-6} \\ C_{n}H_{2n+2} \\ C_{n}H_{2n-2} \\ C_{n}H_{2n-4} \\ C_{n}H_{2n-10}$	7	Alkylbenzenes (C_7-C_{13})
2	114; 128; 142; 156; 170; 184;		6	n-alkanes (C_8-C_{13})
3	96; 152		2	aliphatic dienes $(C_7; C_{11})$
4	80; 94; 108; 122; 136; 150;164;178		8	cyclodienes (C_6-C_{13})
5	102; 116; 130; 158; 172; 186		6	Dinaphtobenzenes

Table 4

Targeted PAHs and phthalates registered in 44 component mixture of semivolatile organic compounds using GC/MS (APPhI).

No	Compound	Mol. mass	Retention time, min	m/z
1	naphthalene	128	1.65	128
2	acenaphthylene	152	2.17	152
3	dimethyl phthalate	194	2.25	195
4	acenaphthene	154	2.27	154
5	fluorene	166	2.52	166
6	diethyl phthalate	222	2.62	223
7	phenanthrene	178	3.08	178
8	fluoranthene	202	3.87	202
9	pyrene	202	3.97	202
10	Benzilbutyl phthalate	312	4.92	313
11	Benz(a)anthracene	228	5.05	228
12	chrysene	228	5.06	228
13	Di-n-oktylphtalate	390	5.67	391
14	Benz(a)pyrene	252	6.10	252
15	Bis(2-ethylhexyl) phthalate	390	6.23	391
16	Indeno (1,2,3-cd) pyrene	276	7.90	276

method, based on retention indexes use for identification, only 43 aromatics were registered.

Possibility of registering of large number of impurities in GC standards of benzene and toluene by MS (APPhCI) (the main component vapor was reagent gas) coeluted with the main component was shown too. These impurities could not be recognized by GC/MS (EI).

The detection limits for iso-propyl benzene in SIM mode were 4×10^{-12} g and 4×10^{-14} g for APPhI/MS and for APPhCI/MS, respectively.

High selective GC/MS (APPhI) and reliable recognition of the sets of targeted PAHs and phthalates in the 44 components model mixture of semivolatile organic compounds was shown. Some of them were practically coeluted.

References

 I.A. Revelsky, Yu. S. Yashin, V.N. Voznesensky, V.K. Kurochkin, R.G. Kostyanovsky, Procedure for mass spectral analysis of gaseous mixture, USSR lventor's Certificate no. 1159412, Bulletin no. 47, 1985.

- [2] I.A. Revelsky, Yu. S Yashin, V.N. Voznesensky, V.K. Kurochkin, R.G. Kostyanovsky, Atmospheric pressure photoionisation mass spectral analysis of n-alkanes, alcohols, ketones, esters and amines, Bulletin of the Academy of Sciences of the USSR, vol. 9, Division of Chemical Science, 1986, p. 1987.
- [3] I.A. Revelsky, A.A. Polyakova, M.I. Tokarev, L.O. Kogan, B.L. Talrose, Yu. S Yashin, Mass spectral analysis with ion molecular reactions, Moscow (in Russian), 1989.
- [4] I.A. Revelsky, I.V. Galakhov, Yu. S. Yashin, A.I. Revelsky, B.I. Zirko, V.G. Karavaeva, I.N. Glazkov, Yu. A Zolotov, A new approach to chemical products quality control and toxicity assessment, in: Proceedings of Pittsburgh Conference on Analytical Chemistry and Applied Spectroscopy, Pittsburgh, USA, 1996, 1342p.
- [5] I.A. Revelsky, Yu. S. Yashin, I.V. Galakhov, I.N. Tikhonova, A.I. Revelsky, B.I. Zirko, The state of chemical products quality control and new approach to it based on atmospheric pressure photoionisation mass spectrometry, in: Proceedings of the International Congress on Analytical Chemistry. Moscow, Russia, I.-20, 1997.
- [6] I.A. Revelsky, Yu. S. Yashin, I.N. Tikhonova, A.I. Revelsky, B.I. Zirko, I.N. Glazkov, Determination of the number and nature of unknown components of mixtures—the state and perspectives, in: Proceedings of 20th International Symposium on Capillary Chromatography, Riva del Garda, Italy, K-08, 1998.
- [7] I.A. Revelsky, Yu. S. Yashin, I.N. Tikhonova, I.N. Glazkov, A.I. Revelsky, Determination of impurities in fine chemicals, pharmaceuticals and monomers based on atmospheric pressure photoionization mass spectrometry, in: Proceedings of 23th International Symposium on Capillary Chromatography, Riva del Garda, Italy, D-04, 2000.
- [8] I.A. Revelsky, Yu. S. Yashin, I.N. Tikhonova, A.I. Revelsky, I.N. Glazkov, Quality control of pharmaceuticals based on atmospheric pressure photoionization mass spectrometry. In: Proceedings of 6th European Congress of pharmaceutical Sciences (EUFEPS 2000). Budapest, Hungary, 2000 p. 130.
- [9] I.A. Revelsky, Yu. S. Yashin, I.N. Tikhonova, A.I. Revelsky, I.N. Glazkov, Analysis of phosphorus CWA surrogates by GC/MS with photoionization and photochemical ionization at atmospheric pressure, in: Proceedings of the 3rd International Symposium on Separation in BioSciences 100 years of Chromatography, Moscow, Russia, 2003, p. 257.
- [10] I.A. Revelsky, Yu.S. Yashin, T.G. Sobolevsky, A.I. Revelsky, B. Miller, V. Oriedo, Eur. J. Mass Spectrom. 9 (2003) 497–507.
- [11] Yu.S. Yashin, I.A. Revelsky, I.N. Tikhonova, Mass Spectrom. 3 (2) (2006) 101-106.
- [12] Yu.S. Yashin, I.A. Revelsky, I.N. Tikhonova, Mass Spectrom. 3 (2) (2006) 107-111.
- [18] D.B. Robb, T.R. Covey, A.P. Bruins, Anal. Chem. 72 (2000) 3653.
- [19] J.A. Syage, M.A. Hanning-Lee, K.A. Hanold, Field Anal. Chem. Technol. 4 (2000) 204.
- [20] J.A. Syage, M.D. Evans, K.A. Hanold, Am. Lab. 32 (2000) 24.
- [21] J.A. Syage, M.D. Evans, Spectroscopy 16 (2001) 14.
- [22] I.A. Revelsky, Yu. S. Yashin, V.V. Tuulik, V.K. Kurochkin, R.G. Kostynovsky, Microliquid chromatography coupled with atmospheric pressure photoionization mass-spectrometry, in: Proceedings of the 1st All-Union Conference on Ion Chromatography, 1989, p. 43.